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A quantum pipette 
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Abshad Curved quanam waveguides are known to bind particles. We show that a number 
of charged fermions in such a trap can be tuned by an external electtomtic field; if the latter is 
slowly increased, the bent duct can serve as a single particle ejecmr up to the spin degeneracy. 

1. Introduction 

Though numerous quantum phenomena can be explained by the usual semiclassical concepts, 
a complete theory-ven in the case of non-relativistic quantum mechanics-would certainly 
be more fundamental. A recent illustration was provided by the properties of particles within 
bent tubes or other infinitely extended regions with Dinchlet boundaries (i.e. hard walls). It 
was demonstrated that such systems exhibit isolated energy eigenvalues [7, 8, 111 despite 
the absence of closed trajectories (apart from the obvious zero-measure set) in their classical 
counterparts. 

These bound states and the related resonance effects in scattering [4] have attracted 
considerable interest-a list of references can be found in the review paper 131. The interest 
is motivated not only by the mentioned theoretical reason, but also by the fact that curved 
tubes (and more complicated regions constructed from them) can model some real physical 
systems. 

The most prominent imong them are quantum wires, i.e. tiny s ~ p s  of a very pure 
semiconductor material. Due to the purity and crystalline structure, an electron within 
the conductivity band can be regarded as a free particle of a certain effective inass. To 
replace the band by a half-line and to neglect the effective-mass dependence on the electron 
momentum is certainly a crude approximation: nevertheless, it is good enough to reproduce 
some properties of real quantum wires. A more detailed discussion of this approximation 
together with references to the corresponding physical literature can be found in [3]. 

There are other motivations to study the Schrlidinger equation in hard-wall tubes. A 
very recent one comes from the proposal to use hollow opticalfibres as waveguides for the 
transport of atoms or ions [lo]; in view of the achievable widths of such ducts, quantum 
effects must again be taken into account. 

 despite numerous investigations of quantum waveguides during the last few years, many 
questions remain to be answered. This concerns, in particular, the effects of external fields. 
Most attention has been paid to magnetic fields, either perpendicular to the waveguide 
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plane (cf [6, 121 for further references) or threaded through the tube [SI, or the quantum 
Hall effect; however, the influence of an electric field alone remains mostly untreated. 

One of our aims is to draw attention to the fact that the Stark effect in non-straight 
tubes has a rich structure coming from a combination of the curvature-induced attractive 
interaction and the electrostatic potential which is nonlinear along the tube even if the field 
is homogeneous. Instead of a general discussion, here we shall concentrate on an interesring 
particular case. 

2. Description of the model 

We consider a particle whose motion is confined to a curved planar strip C2 of a constant 
width d as sketched in figure 1. Though we have in mind the systems mentioned in the 
introduction, in general we shall suppose only that the particle is a fermion of a non-zero 
charge q. We also assume that it is under the influence of a homogeneous electric field of 
an intensity E ;  we denote F := qE. Without loss of generality we shall suppose in the 
following that F > 0. Neglecting the spin of the particles (apart from the Pauli principle 
which we shall need in the following) we therefore describe a single fermion in the tube by 
the Hamiltonian 

where -Ag is the Dirichlet Laplacim on L2(C2) defined conventionally as in [9, 
section XI11.151; for the sake of simplicity we put h = 2m* = 1. The same operator 
can be used to treat a family of conlined fermions if we make another idealization and 
neglect their mutual interaction. 

Eigure 1. The model: a c w e d  
~ ship in an eleceic field. 

If the electric field is absent, F = 0, the essential spectrum of &(F) starts at 
hl := (a/d)’ which is the lowest eigenvalue of the transverse Dirichlet problem. In 
addition, it has at least one eigenvalue below AI whenever C2 is non-straight; a more precise 
formulation will be given below. What happens with thwe eigenvalues when the field is 
switched on depends, of course, substantially on the shape of C2. We restrict our attention 
here to the case when C2 is curved within a bounded region only, and outside is perpendicular 
to the field direction. Moreover, we shall assume that the ‘tilt’ of S2 is one sided so that 
there are no field-induced bound states in the corresponding classical system. 

We have to put these assumptions in more mathematical terms. Following the standard 
procedure [3,71 we choose the ‘lower’ boundary of S2 as a reference curve: we call it r. 
We also introduce the usual curvilinear coordinates: s is the arc length of r and U is the 
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distance from r (for points 'above' the curve; it runs through the interval [0, d]). The 
Cartesian coordinates of the strip points are'then given by 

x = U s )  - U l i D )  ~ Y = rl@) + u m ,  (2) 

where the functions 5,  q satisfy the normalization condition & ( s ) ~  + rj(s)' = 1. One can 
use them to define the signed curvature of the reference curve: 

' y (s)  := rj(s)$(s) - i ( s ) i j (s ) . '  ' ~ (3) 

The latter, in turn, determines the curve r uniquely up to Euclidean transformations of the 
plane: we have 

where P(sz,s1) := -k:y(s)ds is the bending angle of r between the points SI and 
$2 (in contrast to [6,7] we choose the bending angle to be anticlockwise positive), and 
B(s) := p(s ,  0); the non-uniqueness has been removed by choosing the reference frame in 
such a way that e(0) = q(0) = i ( 0 )  = 0 and i (0) = 1. 

We adopt several general regularity assumptions, namely 
01) Y E &@); 
(rZ) allvllm < 1; 
(13) 52 is not self-intersecting; and 
(r4) y is piecewise C2 with p, y bounded. 
Assumption (r2) is needed~to ensure that the other boundary of the strip is also smooth, 

while (14) represents a strengthening of (rl). Under (rlXr3). one can rewrite Hn(0) as 
the Laplace-Beltrami operator on L2(B x [O, d],  g1t2& du), where g1lZ(s, U) := 1 +uy(s)  
[3 ,7];  the potential part of (1) can be easily expressed in terms of the curvilinear coordinates 
by means of (2) and (4). If assumption (r4) is also valid, one can remove the Jacobian, i.e. 
to use the unitary operator'U : L2(52) + LZ@ x [0,4) defined by 

( U W s ,  U) := (1 + uy(s)) l 'Z@(x, y ) .  (5) 

The operator resulting from this transformation, which by abuse of notation we will also 
denote as Hn(F),  has the form 

(6) H ~ F )  = -ad1 + uy(s))-2a, - a;+ v&, 
where 

After this preliminary work, we can now formulate the special assumptions of our model 

(SI) y # 0 with supp y E [O, so] for some SO > 0; 

(s3) B ( S )  E [O, K] for s E [O, sol. 

which we have sketched above: 

( ~ 2 )  J," y(s) ds = 0; and 
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3. Existence of bound states 

Let N ( F )  := N(Hn(F)) be the number of bound states of Hn(F), i.e. the number of its 
isolated eigenvalues counting their multiplicity. Since Hn(F) 2 Hn(F’) obviously holds 
for F 2 F’, all eigenvalues are, by the minimax principle, non-decreasing functions of F. 
This does not automatically mean, however, that N(.) is monotonic, because we connt the 
eigenvalues below infu,,,(Hn(F)) = infu(h.(F)), where h.(F) := 4; + Fu with the 
Dirichlet condition at U = 0, d, and the latter is also increasing. On the other hand, a strong 
enough field destroys all bound states. 

Theorem. Assume (rl)-(r3) and (sl)-(s3). Then 

just one bound state, N ( 0 )  = 1. 
(a) N ( 0 )  2 1. If, in addition (r4) is valid and 1; Iy(s)ld.s is small enough, Hn(0) has 

@) There is a positive FO such that N ( F )  = 0 for all F 2 Fo. 

Proof. (a) Cf 181 and [3, sections 2, 41. 
@) The idea is to estimate HQ(F)  from below by an operator g(F) in such a way that 

the threshold of the essential spectrum is preserved, i.e. infu,,(Hn(F)) = infu,$(g(F)). 
In this case N ( F )  6 f i ( F )  := N ( a ( F ) )  so it is sufficient to choose g(F) which would 
have f i ( F )  = 0 for F large enough. 

- - - - - - - - --B= 
Figure 2. The definition of i i ( F ) .  The full and broken lines represent Dirichlet and Neumann 
boundaries, respectively. 

The estimating operator is conshucted in the way sketched in figure 2. We cut the 
straight tube in the left half-plane by an additional Neumann boundary. Furthermore, we 
deform r to the right of the origin and close the obtained region by another Neumann 
boundary to a rectangle of sides. U ,  b: this is always possible under the assumptions (SI)- 
(s3). Finally, the upper boundaty in the right half-plane is not important; we may remove 
it completely. We denote the operators -A + Fy in these regions with the appropriate 
boundary conditions as Hj(F), j = 1,2,3, and define g(F) := &(F) @ H?(F) @ Hz(F). 

By the bracketing principle f9, section Xm.151, Hn(F) 2 g(F), so it remains for us 
to check that g(F) has the other required properties. Obviously, infu(H3(F)) 2 Fb. To 
estimate the bottom of the spectra of H I ( F ) ,  H*(F), we need to solve the transverse (y- 
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direction) problem. Its eigenfunctions are linear combinations of the fundamental solutions 

u ~ ( y )  :=Ai (F‘/3 (y - i)) uA(y) := Bi (y - a)) (8) 

and the spectral conditions read 

U A ( O ) U , ~ ( ~ )  - U A ( ~ ) U A ( O )  = 0 uA(O)v;(b) - u;(b)ui(O) 0 (9) 
in the first and second region, respectively. Introducing the parameters q := F-’13 and 
6 := a1 + hF-2/3, where al It: -2.33 is the first zero of Ai and using the asymptotic 
properties of the Airy functions [l], we find from (8) and (9) that the lowest eigenvalue is, 
in the first case, given by 

where c1 := -Bi(a1)/2Aif(a1) It: 0.325. The spectrum of Hl(F) is then purely continuous 
and starts from A t ( F ) .  On the other hand, the spectrum of H2(F) is purely discrete, the 
lowest eigenvalue being obtained in a similar way as 

Hence, for all F large enough, AI ( F )  < min(p1 ( F ) ,  Fb),  so the bottom of the specmm of 
A ( F )  is determined by  that of HI (F). Since the latter has no eigenvalues, we arrive at the 
sought conclusion. U 

4. Thin strips: a semiclassical estimate 

The above general result yields only a very rough estimate of the critical field strength Fo 
and it says nothing about the behaviour of the function N ( . )  in the interval 10, Fo]. To 
get a better idea, in this section we shall discuss, on a heuristic level, the case of a thin 
strip, dll y Ilm < 1. We shall suppose that the curvature y is smooth enough so that we can 
replace Hn(F) by the unitarily equivalent operator (6). If the strip is thin, the problem can 
then be reduced to a discussion of the onsdimensional Schrodinger operator 

H ( F )  := -a ;+VF(s )  := -a ,Z-fy(s )2+F~dsinB(sI)dS1 (12) 

on L2@),  which is the leading term in the projection of the operator H d F )  onto the 
lowest transverse mode with the corresponding contribution Ai := ( ~ / d ) ~  to the energy 
subtracted-for details see [3, section 51. 

The number of bound states in the curved strip can be estimated semiclassically: 

denoting ?F(s) := min{O, V&)} and F F ( S )  := G, we have 

The estimate certainly makes sense as long as the phase space allowed for the classical 
motion is large enough. We know that it fails if the field is absent and the strip is only 
slightly curved, because then N(0)  = 1 for an arbitrarily small non-zero y .  On the other 
hand, if N ( 0 )  >> 1 we can still use it to assess the critical field value Fo because the property 
of one-dimensional Schrodinger operators, on which the above claim is based, requires the 
potential to decay fast enough at infinity [2] which is certainly not true for F # 0 when the 
asymptotics on the two sides are different. 
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The right-hand side of relation (l3) is a decreasing function of F and N(F) = 0 
in accordance with the general result discussed above. As an illustration, consider the 
following particular case. 

Bigure 3. A ship with.dtmate bends for @ = x and N = 2. 

Example. Suppose that the waveguide has 2N bends of alternating orientation, each of 
them of radius R and angle B (cf figure 3). Then, so = ZNpR and V&) = -(2R)-', so 
N(0)  M N B / z  and the estimate can be used as'long as the number of bends N > r/@. 
Using the parametrization (Z), we easily find that 

(2nR(1 -cosp) 

I -A (1 -cos (z(n+ -')) s E ((2n + 1)BR, (2n + 2)BR). R 

Hence, y(.) is a sum of two functions, one linear and one periodic. For the purpose of 
an estimate we neglect the oscillating part; this yields 

So performing the integation in (13), we obtain 

B I 24xFR3sin2612 . .  
N ( F )  % x[l - (1 - 16NFR3sin2,!3/2)3/2] 0 i F < (16NR3sinZp/2)-' (14) 

B I 24n FR3 sin' ,!3/2 
F > (16NR3sin2p/2)-'. 

The result is shown in figure 4. Using this result we can estimate the field values at which 
the number of bound states in the trap changes by one. In particular, the critical value at 
which the last bound state is absorbed in the continuum is 

B 
24zR3 sin2p/2. 

Fo 
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‘l-7 ., 

Fipurr4. Theestimateofthe bouodsrate number,IntN(F),intheexampleforS=n,R = O S  
andN=5. 

In a physical system of units the right-hand side has to be muhiplied by Tz2/2m*, where m’ 
is the reduced mass of the electron. A typical value is m* = O.067me for GaAs quantum 
wires; choosing @ = x and R of the order of pm, we find the critical intensity EO of the 
order of pV. In a similar way, one can estimate the critical field value for other waveguide 
geometries and fermion types. 

As mentioned above, we have taken the spin into account d y  through the Pauli 
principle. In reality each of the levels discussed here will be occupied by a pair of electronic 
states, or a (2s + 1)-tuple for fermions of spin s. Unless they are distinguished by an 
additional interaction, these states disappear in the Continuum simultaneously as the field 
strength changes. 

5. Conclusions 

The existence of curvatureinduced bound states means that bent quantum waveguides can 
serve as traps for particles which occupy these localized states. This is true any time that 
the waveguide model used here allows a reasonable description of a quantum system to be 
made; for instance, in the situations mentioned briefly in the introduction. 

As we have said, for the purpose of the present paper we disregard interaciions between 
particles which should be taken into account if two or more states of the trap are occupied. 
In analogy with artificial atoms based on quantum dots [13], one expects that the simple 
semiclassical estimate of the preceding section should be replaced by .a sort of Thomas- 
Fermi theory in a more realistic treatment. A mathematical treatment of such a system 
would certainly be much more difficult; at the same time one expects that the interfermion 
interactions should not qualitatively change the dependence of the bound-state number on 
the applied field. 

The main conclusion of the above discussion is that an electrostatic field can be used 
to control the number of particles contained in the waveguide with a one-sided tilt. If 
all the states of the trap an occupied and the field intensity is changing adiabatically, at 
certain values the highest excited state disappears in the continuum and the particle which 
has occupied it is ejected into the ‘lower’ straight duct. This mechanism may provide a 
possible source which would produce single particlesup to the spin degeneracy-at an 
experimentalist’s will, as indicated in the title. 



5330 P Exner 

Acknowledgments 

The author thanks the first referee for a useful comment. The work has been partially 
supported by the grants AS No 48409 and GA CR No 202-93-1314. 

References 

[IJ Abramawik M and Stegun I 1964 Hond6ookofMarhematicaicnlFuncfions Washingion, D C  National Bureau 

D] Blanckenkcler R, Goldberger M L and Simon B 1977 The bound states of weakly coupled long-range 

131 Duclos P and h e r  P 1595 Curvatureinduced bound states in quantum waveguides in two and three 

[4] Duclos P, Exner P and .$Tovi&k P 1995 Curvature-induced resonances in a twodimensional Didchlet tube 

[5] Dunne 0 and Jaffe R L 1993 Bound state8 in twisted Ahamnov-Bobm tubes AM. Phys. 233 180-196 
[6] Emer P 1993 A twiski Landau gauge Phys Lea. 178A 736-8 
171 Exner P and Seba P 1989 Bound states incurved quantum waveguides 3. Math. Phys, 30 2574-80 
181 Goldstone J and Jaffe R L 1992 Bound states in twisting tubes Pkys. Rev. B 45 14100-7 
[9] Reed M and S i o n  B 1978 Merhods of Modem Mathematical Physics N: Analysis of Opernrors (New York: 

[lo] Savage C M, Markensteiner S and Zoller P 1993 Atomic waveguides and cavities from hollow optical fibres 

[I11 Schult R L, Ravenhall D G and Wyld H W 1989 Quantum bound sate in classically unbound system of 

1121 Vacek K. Okiji A and Kasai H 1993 Multichannel ballistic magnetokanspm throuQ quantum wires with 

[13] Yngvason J 1994 Asymptotics of natural and &fcial am& in strong magnetic fields XZ& Conpr. of ZAMP 

of Standards) 

one-dimensional quantum Hamiltonians Ann Phys. 108 89-78 

dimensions Rev. Mod. Phys. 7 73-IM 

AM. Insr. H P o i m o d  62 81-101 

Academic) 

Fundnmenrais of Quantum OpIics Ill ed S Mloeky perlin: Springer) 

crossed wires Phys. Rev. B 39 5476-9 

double circular bends Phys. Rev. B 47 3695-705 

(Paris) 


